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Efficient reconstruction of multiphase morphologies from correlation functions
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A highly efficient algorithm for the reconstruction of microstructures of heterogeneous media from spatial
correlation functions is presented. Since many experimental techniques yield two-point correlation functions,
the restoration of heterogeneous structures, such as composites, porous materials, microemulsions, ceramics, or
polymer blends, is an inverse problem of fundamental importance. Similar to previously proposed algorithms,
the new method relies on Monte Carlo optimization, representing the microstructure on a discrete grid. An
efficient way to update the correlation functions after local changes to the structure is introduced. In addition,
the rate of convergence is substantially enhanced by selective Monte Carlo moves at interfaces. Speedups over
prior methods of more than two orders of magnitude are thus achieved. Moreover, an improved minimization
protocol leads to additional gains. The algorithm is ideally suited for implementation on parallel computers.
The increase in efficiency brings new classes of problems within the realm of the tractable, notably those
involving several different structural length scales and/or components.
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I. INTRODUCTION

Heterogeneous media, such as composites, porous m
rials, or polymer blends, often exhibit complex microstru
tures. While many important characterization techniques p
vide morphological information in the form of spatia
correlation functions, a real-space microstructural mode
needed for understanding and predicting material proper
Therefore, finding microstructures consistent with a giv
correlation function is important for both materials scien
and technology.

Several different approaches have been taken to solve
inverse problem@1–15#. A scheme originally proposed b
Cahn@1# associates interfaces between two phases with
surfaces of a correlated random Gaussian field; a regio
space is attributed to a phase according to whether the v
of a Gaussian random variable is within a specified ran
This method was originally devised for the description
phase separation by spinodal decomposition@1#. It has been
applied to the reconstruction of two phase systems by Q
lier @2#, and further significant advances in its mathemati
structure have been reported since@3–8#. Adler @9# and Lev-
itz @10# have evaluated the method for different types
geometrical disorder and compared it to experimental res
on porous media. Recently, the method has been applie
the analysis of scattering data from block copolymers a
microemulsions@16,17#.

However, the random Gaussian field method suffers fr
several inherent limitations. The Gaussian character of
field is essential, making it is impossible to generalize
method to other statistics. The implications of this in ter
of limitations imposed on the phase geometries that can
generated are not presently fully understood. Even more
portantly, it is difficult to generalize the approach to syste
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with more than two phases@18#.
Recently, Torquato and co-workers@11–13# have pro-

posed a stochastic reconstruction procedure based on
cretization of the spatial structure on a grid, each pixel
which is attributed to a single phase. The method dep
from an arbitrary configuration and then minimizes the d
crepancy between the actual and target correlation funct
by simulated annealing.

The discrete stochastic minimization approach is attr
tive due to its generality and flexibility. No restrictions a
imposed on microstructures and there is no limit, in pr
ciple, to the number of different phases in the system.
addition, structural information in forms other than corre
tion functions can be taken into account in the restorat
process@11#.

The main disadvantage of the method lies in its high co
putational cost. In this discretized form, the reconstruct
problem is related to the search for a ground state of a s
system with long-range multispin interactions, since the t
get correlation function couples the state of pixels at b
small and large separations on the grid. Linear chains
spins with long-range interactions have been studied ex
sively over the past decade@19–22#, and have acquired a
reputation to be among the hardest discrete minimiza
problems known@22#.

Due to this complex nature of the minimization problem
a large number of Monte Carlo steps is required to achi
convergence. In addition, the recalculation of the correlat
function at every attempted step is an expensive opera
@11#. To date, the most efficient version of the algorithm
based on the discrete fast Fourier transform~FFT!, requiring
O(N ln N1N) operations, whereN is the number of pixels on
the grid @13#.

This computational demand severely limits the applicab
ity of the method. When high digital resolution is importan
for instance, in systems that contain several different str
tural length scales, it can only be applied with difficulty.
order to improve performance, it has been proposed to ev
ate the discrepancy between the target and actual correla

,
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M. G. ROZMAN AND MARCEL UTZ PHYSICAL REVIEW E 63 066701
function only along selected spatial directions@11#. While
significantly reducing the computational load, this has be
shown to lead to the undesirable generation of structu
with lower symmetry than the target correlation functi
@13,14#.

In the present contribution, we propose a discrete mini
zation algorithm for restoration that avoids these shortco
ings. The new algorithm uses a method to update the co
lation function much faster than the FFT, requiring on
O(N) operations. This is possible by reusing the correlat
function from the previous configuration, rather than reco
puting it from scratch at every step. In addition, candid
pixels for the Monte Carlo moves are chosen exclusively
phase boundaries, and a minimization method different fr
the traditional simulated annealing protocol is used. It will
shown that these improvements together lead to speedu
more than three orders of magnitude. In addition, the met
is easily implemented on parallel computer architectures

The rest of the paper is organized as follows. Section
introduces the reconstruction algorithm in detail. In Sec.
the method is applied to several two- and three-phase
tems. The implementation of the new algorithm on para
computer architectures is discussed in Sec. IV. Finally, c
clusions are drawn in Sec. V. In the Appendix the upd
procedure is described in a form suitable for programmi
and some implementation details important for algorith
performance are discussed.

II. COMPUTATIONAL METHODS

A. Mathematical formulation of the reconstruction problem

In order to numerically describe a random medium it
necessary to introduce a finite cell subject to periodic c
tinuation conditions such that an infinite medium is co
posed of periodic ‘‘images’’ of the fundamental cell. W
denote the cell symbolically byV and spatial integration ove
the cell is represented by*V dr . . . . The cell volume is then

V5E
V
dr .

The microstructure of a material consisting ofn components
is completely described by the local densitiesr i(r ), i
51 . . .n. By definition, ther i are positive quantities. The
average concentration of componenti can be written as

f i5^r i&5
1

VEV
drr i~r !. ~1!

The angular brackets in Eq.~1! denote the ensemble averag
which can be replaced by the volume average,

^ . . . &[
1

VEV
dr . . .

if the system is stationary and macroscopically homo
neous.

The two-point correlation functionsGi j (r ) are defined as
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Gi j ~r !5^r i~0!r j~r !& ~2!

5
1

VEV
dr 8r i~r 8!r j~r1r 8!. ~3!

The problem under study here is to find a set of dens
functions$r i(r )% that are consistent with a given set of co
relation functions$Gi j

t (r )% to within a specified precision. As
is well known, this inverse problem is ill posed in gener
@11#. Therefore any practical algorithm selects a microstr
ture from the manifold of possible solutions, minimizing th
discrepancyD between the configuration$r i(r )% and a given
set of target correlation functions$Gi j

t (r )%, whereD is de-
fined as

D5(
i j

E
V
dr uGi j ~r !2Gi j

t ~r !u. ~4!

Starting from a given configuration, a new one can
obtained by applying a series of local changes to the de
ties r i . The next section discusses the response of the
relation functions to such local perturbations.

B. Update of correlation functions after local perturbations

As outlined in the Introduction, previously proposed alg
rithms to reconstruct discrete two-phase systems@11–15# are
based on Monte Carlo type minimization of the discrepan
D. Randomly chosen local changes in the discretized den
are accepted or rejected using a simulated annealing pr
col. The change in the discrepancyD must be computed for
each attempted Monte Carlo step in order to decide whe
it should be accepted or rejected. To this end, the correla
function has been recalculated completely from scratch a
every attempted step@13#.

Closer analysis, however, reveals that the response o
correlation function to alocal change in density can be ob
tained in a computationally much less costly way if the c
relation functionbeforethe change is known.

In order to illustrate the idea, it is sufficient to discuss t
response of the autocorrelation functionG(r ) to a local per-
turbation in the density; the case of cross-correlation fu
tions is completely analogous. The simplest local change
the density can be represented as

rn~r !5ro~r !1ad~r2r 1!, ~5!

wherero and rn are the density functions before and aft
the perturbation.a is the magnitude of the change andd(r )
denotes Dirac’s delta function@23#. Using the definition of
the correlation function, we obtain
1-2
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EFFICIENT RECONSTRUCTION OF MULTIPHASE . . . PHYSICAL REVIEW E 63 066701
Gn~r !5
1

VEV
dr 8rn~r 8!rn~r1r 8! ~6!

5
1

VEV
dr 8@ro~r 8!1ad~r 82r 1!#@ro~r1r 8!

1ad~r1r 82r 1!# ~7!

5
1

VEV
dr 8@ro~r 8!ro~r1r 8!1aro~r 8!d~r1r 82r 1!

1aro~r1r 8!d~r 82r 1!1a2d~r 82r 1!d~r1r 82r 1!#

~8!

5Go~r !1a@ro~r2r 1!1ro~r1r 1!#1a2d~r !. ~9!

Hence, the updated correlation functionGn(r ) can essen-
tially be found from the ‘‘old’’ oneGo(r ) by a simple addi-
tion of the shifted density function. If this is done on a d
crete grid ofN cells, it requires onlyO(N) operations as
opposed toO(N ln N1N) if the fast Fourier transform is
used. In practice, this translates to a speedup by one to
orders of magnitude. Figure 1 shows the speedup factor
tween Eq.~9! and the fast Fourier transform@24# for a single
Monte Carlo step~exchange of the contents of two pixels o
a two-dimensional grid! as a function of grid size. The up
date scheme is not restricted to two-point correlation fu
tions. It can be generalized to higher order correlation fu
tions in a straightforward manner.

The last term in Eq.~9!, which does not depend onr 1 ,
reflects the change in the average concentration cause
the perturbation,

fn5
1

VEV
drrn~r !5fo1

a

V
. ~10!

The average concentrations can easily be computed fro
given set of correlation functions. Hence, it is always p

FIG. 1. Speedup of the update algorithm with respect to FFT
linear size of the grid. The liney55 ln x29.5 is provided as a guide
to the eye.
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sible in practice to depart from a configuration that rep
sents them correctly. It is therefore advantageous to use
ementary Monte Carlo steps that conserve the concentra
such as exchanging the contents of two pixels.

In the rest of the paper, we will restrict the discussion
the case ofcomplete segregationof the components into
separate phases. In this case, it is possible to comple
characterize the microstructure in terms of characteristic d
sity functions, which are defined in the following way:

r i~r !5H 1, when r is within phase i

0, otherwise.
~11!

This means that at every locationr , exactly one of the
densities$r i(r )% is equal to 1, whereas all the others vanis
In this case, the density functions obey the relation

r i~r !5r i
2~r !, ~12!

and the average concentrationsf i adopt the meaning of vol-
ume fractions.

We will represent the microstructure inside the period
cell on an orthogonal grid, each pixel of which will conta
exactly one of thei different components. Accordingly dis
cretized formulas for the update of the auto-correlation a
cross-correlation functions, which are directly suitable
implementation on a computer, are presented in the App
dix.

C. Restriction to interfacial Monte Carlo moves

For an accurate description of a microstructure on a d
crete grid, the size of the pixels must be chosen consider
smaller than the smallest feature size present in the struc
If this condition is fulfilled each phase in the system, wh
ever its geometrical shape, is composed of a large numbe
contiguous pixels. In other words, the overwhelming maj
ity of pixels will be completely surrounded by others th
contain the same component.

Selecting candidate pixels for Monte Carlo moves co
pletely at random runs counter to this observation. In the v
majority of cases, such moves will generate single, isola
pixels of one phase embedded in another. Eventually
course, the minimization procedure will remove these a
facts and converge to a compact structure in agreement
the given correlation functions. However, much of the co
puter time necessary for minimization is used solely to
move such spurious isolated pixels.

This can be remedied by selecting exclusivelyinterfacial
pixels ~which have at least one neighbor that contains a
ferent component! as candidates for an exchange Mon
Carlo step. As illustrated in Fig. 3, this substantially i
creases the rate of convergence. The resulting speedu
most significant in the later stage of reconstruction.

It is important to note that the restriction to interfaci
moves does not lead to conservation of the number of in
facial pixels in the system, since a pixel is allowed to hav
different number of unlike neighbors before and after
move. Therefore, the method remainsergodic, i.e., all con-
figurations possible at the given volume fractions are acc

s

1-3
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M. G. ROZMAN AND MARCEL UTZ PHYSICAL REVIEW E 63 066701
sible from any starting configuration.
The selection of interfacial pixels requires some com

tational effort. In principle, it is possible to keep track of a
interfacial pixels in a suitable dynamic data structure. On
established, this list can be continuously kept up to date
marginal cost. However, in all cases studied, the comp
time needed per Monte Carlo move is strongly dominated
the update of the correlation functions. Even if the select
is done by repeated random choice until an interfacial p
is found, the overhead remains negligible.

D. Optimization technique

In addition to the improvements described in the previo
sections, we have found that a simpler variant of stocha
minimization than the traditional simulated annealing a
proach leads to faster convergence in all cases studied
stead of the conventional Metropolis criterion, our algorith
simply accepts a move if it decreases the discrepancyD and
rejects it otherwise. This is related to the ‘‘Great Delug
algorithm which has been successfully applied to this pr
lem by Cule and Torquato@13#. In the initial stage of mini-
mization, where the discrepancy is large, this leads to a ra
rate of convergence. Eventually, however, when conv
gence is almost achieved, the acceptance ratio become
practicably low. At this stage, we found it advantageous
allow for an ‘‘uphill’’ move once in a while. The algorithm
presented in this contribution achieves this by acceptin
single Monte Carlo move after a specified~large! number of
continuous rejections, regardless of the change in the
crepancy it causes.

Whereas the conventional simulated annealing proto
relies on several parameters~number of temperature levels
number of equilibration steps at each level, starting temp
ture!, all of which must be carefully tuned to the proble
under study, the method outlined above has only a single
~the number of rejections until an ‘‘uphill’’ move is al
lowed!, which is very simple to choose in practice.

III. RESULTS AND DISCUSSION

While the algorithm is completely independent of t
number of spatial dimensions, the examples presented in
following are two-dimensional for convenience of visualiz
tion.

A. A simple test case

As a simple test, a target autocorrelation function w
obtained from the periodic two-phase structure shown in F
2~a!. Departing from the initial ~random! configuration
shown in Fig. 2~b!, the target structure becomes alrea
roughly recognizable after about 7000 attempted Mo
Carlo moves~2000 accepted steps! @Fig. 2~d!#. After 15 000
attempted moves, the structure is essentially correct, with
exception of a small number of pixels on the phase bou
aries@Fig. 2~e!#. Using a number of different initial configu
rations, random as well as layered, it was verified that
restoration process does not depend on the initial state.
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Figure 3 illustrates the convergence behavior of the al
rithm. The decrease of the discrepancy, shown in Fig. 3~a!, is
significantly more rapid if only interfacial Monte Carl
moves are used~solid line! rather than when no such restric
tion is applied~dashed line!. The concentration of interfacia
pixels is plotted in Fig. 3~b!. Starting at a high value of 0.88
for the random initial structure, interfacial Monte Car
moves bring it quickly close to the correct value of15

64

'0.234. As is obvious from the figure, this takes very mu
longer if candidate pixels are chosen completely at rando

The restriction to interfacial moves leads to two clea
distinct kinetic regimes. First, a rough approximation to t
structure is found as shown in Fig. 2~d!. This stage is char-
acterized by a rapid decay of the discrepancy and a h
acceptance ratio of the Monte Carlo moves.

At some point, the acceptance ratio drops significan
and the convergence slows down. This stage is reached w
the concentration of interfacial pixels has roughly converg
to the correct value and the target correlation function
already quite well reproduced. After this point, the structu
remains essentially unaltered in general appearance b
gradually refined in detail.

FIG. 2. Simple two-phase test system.~a! Target structure,~b!
initial random configuration,~c! configuration after 2706 attempte
Monte Carlo moves~1000 accepted steps!, ~d! configuration after
7132 attempted Monte Carlo moves~2000 accepted steps!, ~e! con-
figuration after 15 000 attempted Monte Carlo moves~2360 ac-
cepted steps!, ~f! final configuration ~150 000 attempted Monte
Carlo moves, 2535 accepted steps!.
1-4
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EFFICIENT RECONSTRUCTION OF MULTIPHASE . . . PHYSICAL REVIEW E 63 066701
B. Construction of two-phase systems

Rather than from a given target configuration, it is a
possible to depart from an analytically specified autocorre
tion function such as@6,13#

FIG. 3. Convergence of the algorithm for the test structure
Fig. 2. The solid lines correspond to selective Monte Carlo mo
using interfacial pixels only, whereas dashed curves were obta
using completely random moves. Top panel: convergence of
discrepancy, bottom panel: convergence of the interfacial pixel c
centration. The horizontal line indicates the target value15

64

'0.234.
06670
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G~r !5f21f~12f!e2r /r 0
sin~2pr /a0!

2pr /a0
, ~13!

which applies to a two-component system wheref is the
volume fraction of phase 1. The parametersr 0 anda0 control
the overall exponential damping and the short-range osc
tory behavior of the correlation function, respectively. In t
limit a0!r 0 , a0 determines the short-range structural leng
scale of the medium. Equation~13! has been used exten
sively as a benchmark for reconstruction@6,13#. A typical
structure calculated using the parametersf50.55, r 0
51.1L, a050.125L, whereL is the linear size of the cell, is
presented in Fig. 4~b!.

After about 900 000 accepted Monte Carlo steps the st
ture has essentially converged. The correlation function
reproduced to a good precision. The remaining discrepan
are due to the fact that the correlation function in Eq.~13! is
not physically realizable in the case of complete segrega
@25#. Several necessary conditions for realizability, in ad
tion to the ones discussed by Torquato@26#, will be reported
in a forthcoming publication. For reasonable choices of
parameters, however, stochastic minimization will still find
structure that approximates Eq.~13! to a satisfactory preci-
sion. Although a much smaller resolution would have be
sufficient in this case, 102431024 pixels have been used fo
consistency with the following example.

In order to illustrate the additional capabilities offered
the algorithm, Fig. 4~e! shows a similar structure calculate
for the correlation function

G~r !5f21
1

2
f~12f!e2r /r 0Fsin~2pr /a0!

2pr /a0

1
sin~2pr /a1!

2pr /a1
G , ~14!

n
s
ed
e
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e
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s

s

FIG. 4. Construction of
two-phase structures from th
analytically given correlation
functions shown by solid lines
in ~a! @Eq. ~13!# and ~d! @Eq.
~14!#. L is the linear size of the
periodic cell. The target corre
lation function~a! contains one
structural length scale, wherea
~d! includes additional short-
range oscillations.~b! and ~e!
show the resulting structure
on a 102431024 grid after
9 000 000 attempted Monte
Carlo moves. The correlation
functions corresponding to the
structures ~b! and ~e! are
shown as dotted lines in~a! and
~d!, respectively. Magnifica-
tions of the indicated regions
are shown in~c! and ~f!.
1-5
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M. G. ROZMAN AND MARCEL UTZ PHYSICAL REVIEW E 63 066701
with a150.0125L. All other parameters have the same v
ues as in the previous example. This system hastwo different
structural length scales given bya0 anda1. Such structures
must be represented by a highly resolved grid (102431024
in this case!. Whereas the computational demands wo
have been close to prohibitive for previously proposed al
rithms, the calculation converged after about 24 h of C
time on 8 nodes of a parallel workstation cluster using
method presented here.

C. Triphase systems

Many important materials consist of more than tw
phases. Therefore, the new algorithm has been impleme
to deal with multiphase systems. This capability, which
quires the consideration of autocorrelation as well as cro
correlation functions, is illustrated below using examp
structures that have been selected in analogy to some o
microstructures observed in triblock copolymers. This cl
of materials is well known to phase separate into a rich
riety of microstructures depending on the relative length
the different blocks@27,28#.

FIG. 5. Reconstruction of a triphase core-shell structure.~a!
Target system,~b! initial configuration,~c! configuration after 3427
attempted Monte Carlo moves~2000 accepted steps!, ~d! configu-
ration after 9501 attempted Monte Carlo moves~4000 accepted
steps!, ~e! configuration after 25 176 attempted Monte Carlo mov
~6000 accepted steps!, ~f! final configuration~200 000 attempted
Monte Carlo moves, 7771 accepted steps!.
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Figure 5 shows an example of the reconstruction o
hypothetical periodic particulate system of disks of phasA
enclosing a ‘‘nucleus’’ of phaseB, interspersed in a matrix
C. Volume fractions arefA50.4, fB50.3, andfC50.3.
The target configuration@Fig. 5~a!# was obtained using
Monte Carlo mixing of hard disks and subsequent digitiz
tion on a 64364 grid. Figures 5~c!, 5~d!, 5~e!, and 5~f! show
the reconstructed system after 3427, 9501, 25 176,
200 000 attempted Monte Carlo moves, respectively.

A second example is presented in Fig. 6. It correspond
a two-dimensional section through a periodic 3D layerli
structure, which has been observed experimentally in a
block copolymer@29#. The periodic cell of the microstructur
was digitized on a 64364 grid.

The CPU time necessary for reconstructions w
'98 sec for both examples. The computations were p
formed on an AMD K7 700 MHz based computer.

IV. PARALLELIZATION

The proposed algorithm is ideally suited for paral
distributed-memory machines. In our implementation ea

s

FIG. 6. Reconstruction of a triphase knitted structure analog
to a triblock copolymer system@29#. ~a! Target system,~b! initial
configuration,~c! configuration after 1684 attempted Monte Car
moves~1000 accepted steps!, ~d! configuration after 8446 attempte
Monte Carlo moves~3000 accepted steps!, ~e! configuration after
16 713 attempted Monte Carlo moves~4000 accepted steps!, ~f!
final configuration~200 000 attempted Monte Carlo moves, 45
accepted steps!.
1-6
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EFFICIENT RECONSTRUCTION OF MULTIPHASE . . . PHYSICAL REVIEW E 63 066701
computational node is responsible for a slice of the corre
tion functions. One node acts as a master, selecting a pa
pixels for Monte Carlo exchange and broadcasting it to
slaves. These then update their slices of the correlation fu
tions according to Eqs.~A5!–~A8! and report the respectiv
contributions to the discrepancy back to the master. To
effect, it is necessary for each slave to store the entire cur
configuration as well as the relevant slices of the target c
relation functions. The master then decides whether or no
accept the move and broadcasts its decision to the sla
which in turn update the locally stored current configuratio
The communication load generated by this scheme is m
mal; at each cycle only a few integer numbers for the can
date pixel positions, the discrepancy, and the acceptance
cision need to be exchanged between master and slaves
represents another advantage over Fourier transform m
ods, since parallelization of the FFT algorithm generate
much larger communication load@30, Chap. 3#.

Figure 7 shows the speedup of the algorithm as a func
of the number of processors for a two-phase system o
307233072 grid. The scaling is linear over the entire ran
and no saturation effects are observable.

V. CONCLUSIONS

A highly efficient Monte Carlo minimization algorithm
for the reconstruction of multiphase microstructures fro
correlation functions has been introduced. The method c
putes the response of the correlation functions tolocalized
changes in the underlying densities. This decreases the
time per Monte Carlo step by one to two orders of magnitu
compared to previous methods@13#. In addition, candidates
for Monte Carlo moves are selected exclusively at ph
boundaries, leading to a greatly enhanced rate of con
gence. The two improvements are independent from e
other. Their effect on the overall CPU time needed for r
toration is multiplicative.

The speedup is such that problems that were previo
out of reach due to the computational demand can now
treated. This includes systems that require high resolu

FIG. 7. Scaling of the algorithm on a cluster of Pentium III 5
MHz machines with 100 Mbit/sec Ethernet communications.
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due to the presence of several structural length scales as
as multiphase systems, where more than one correla
function is relevant.

An interactive demonstration of the method as well
animated versions of Figs. 2, 5, and 6 are available on
authors’ web site@31#.
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APPENDIX: IMPLEMENTATION OF THE UPDATE
PROCEDURE

In the following, detailed formulas are given for the u
date of correlation functions after exchange of the conte
of two pixels. These formulas are essentially discretized v
sions of the fundamental relationship given in Eq.~9!, and
can directly be used in order to implement the algorithm
a computer. In the followingr , a, andb denote vectors on
the discrete grid of an arbitrary number of dimensions. It
advantageous to work with un-normalized discrete repres
tations of the correlation functions defined as

Gi j ~r !5(
r8

r i~r 8!r j~r1r 8!. ~A1!

Consider two pixels located at the grid pointsa and b. As-
sume them to contain componentsi andj, respectively. If the
contents of those two pixels are exchanged, the density fu
tions r i andr j transform in the following way:

r i~r !→r i~r !2d~r2a!1d~r2b!, ~A2!

r j~r !→r j~r !1d~r2a!2d~r2b!. ~A3!

Here, d(r ) has the meaning of the Kronecker tensor; it
unity if all components of its argument vanish and zero o
erwise. All other density functions are, of course, unaffec
by the move, hence

rk~r !→rk~r !, kÞ i , j . ~A4!

Four different cases must be discussed for the updat
the discretized correlation functions. Trivially, correlatio
functions that involve neither of the two componentsi and j
remain unaffected,

Glm~r !→Glm~r !, l ,mÞ i , j . ~A5!

Correlation functions involving exactly one of the two com
ponentsi and j transform as

Gim~r !→Gim~r !2rm~r1a!1rm~r1b!, mÞ j ,
~A6!

whereas the cross-correlation function betweeni and j must
be updated as
1-7
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Gi j ~r !→Gi j ~r !1r i~a2r !2r i~b2r !2r j~a1r !1r j~b1r !

1d~b2a2r !1d~a2b2r !22d~r !. ~A7!

Finally the autocorrelation functionsGii and Gj j transform
as follows:

Gii ~r !→Gii ~r !2r i~a2r !1r i~b2r !2r i~a1r !1r i~b1r !

2d~a2b1r !2d~b2a1r !12d~r !, ~A8!

Gj j ~r !→Gj j ~r !1r j~a2r !2r j~b2r !1r j~a1r !2r j~b1r !

2d~a2b1r !2d~b2a1r !12d~r !. ~A9!
rt

e

06670
Note that Eqs.~A5!–~A8! conserve the normalization of th
correlation functions, i.e.,Gi j (0)→Gi j (0) for all i , j .

As is evident from these update formulas, the ent
Monte Carlo algorithm, including the calculation of the di
crepancy, involves only addition and multiplication oper
tions and never division. This is important, since it makes
possible to implement the algorithm entirely in terms of i
teger numbers. Depending on the computer architec
used, this may bring about another speed advantage. E
more importantly, it completely removes any accumulati
of roundoff errors. Given a fully representable set of d
cretized correlation functions, the algorithm is thus capa
of providing anexactsolution.
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