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Efficient reconstruction of multiphase morphologies from correlation functions
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A highly efficient algorithm for the reconstruction of microstructures of heterogeneous media from spatial
correlation functions is presented. Since many experimental techniques yield two-point correlation functions,
the restoration of heterogeneous structures, such as composites, porous materials, microemulsions, ceramics, or
polymer blends, is an inverse problem of fundamental importance. Similar to previously proposed algorithms,
the new method relies on Monte Carlo optimization, representing the microstructure on a discrete grid. An
efficient way to update the correlation functions after local changes to the structure is introduced. In addition,
the rate of convergence is substantially enhanced by selective Monte Carlo moves at interfaces. Speedups over
prior methods of more than two orders of magnitude are thus achieved. Moreover, an improved minimization
protocol leads to additional gains. The algorithm is ideally suited for implementation on parallel computers.
The increase in efficiency brings new classes of problems within the realm of the tractable, notably those
involving several different structural length scales and/or components.
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I. INTRODUCTION with more than two phasd48].

Heterogeneous media, such as composites, porous mate- Recently, Torquato and co-workef41-13 have pro-
rials, or polymer blends, often exhibit complex microstruc-posed a stochastic reconstruction procedure based on dis-
tures. While many important characterization techniques proeretization of the spatial structure on a grid, each pixel of
vide morphological information in the form of spatial which is attributed to a single phase. The method departs
correlation functions, a real-space microstructural model igrom an arbitrary configuration and then minimizes the dis-
needed for understanding and predicting material propertiesrepancy between the actual and target correlation functions
Therefore, finding microstructures consistent with a giverby simulated annealing.
correlation function is important for both materials science The discrete stochastic minimization approach is attrac-
and technology. tive due to its generality and flexibility. No restrictions are

Several different approaches have been taken to solve thismposed on microstructures and there is no limit, in prin-
inverse problen{1-15. A scheme originally proposed by ciple, to the number of different phases in the system. In
Cahn[1] associates interfaces between two phases with isaaddition, structural information in forms other than correla-
surfaces of a correlated random Gaussian field; a region dfon functions can be taken into account in the restoration
space is attributed to a phase according to whether the valygocesq11].
of a Gaussian random variable is within a specified range. The main disadvantage of the method lies in its high com-
This method was originally devised for the description ofputational cost. In this discretized form, the reconstruction
phase separation by spinodal decomposifibjn It has been  problem is related to the search for a ground state of a spin
applied to the reconstruction of two phase systems by Quibsystem with long-range multispin interactions, since the tar-
lier [2], and further significant advances in its mathematicalget correlation function couples the state of pixels at both
structure have been reported sifi8e-8]. Adler [9] and Lev- small and large separations on the grid. Linear chains of
itz [10] have evaluated the method for different types ofspins with long-range interactions have been studied exten-
geometrical disorder and compared it to experimental resultsively over the past decadé9-22, and have acquired a
on porous media. Recently, the method has been applied teputation to be among the hardest discrete minimization
the analysis of scattering data from block copolymers angroblems knowrj22].
microemulsiong 16,17]. Due to this complex nature of the minimization problem,

However, the random Gaussian field method suffers frona large number of Monte Carlo steps is required to achieve
several inherent limitations. The Gaussian character of theonvergence. In addition, the recalculation of the correlation
field is essential, making it is impossible to generalize thefunction at every attempted step is an expensive operation
method to other statistics. The implications of this in terms[11]. To date, the most efficient version of the algorithm is
of limitations imposed on the phase geometries that can bbased on the discrete fast Fourier transf¢RRT), requiring
generated are not presently fully understood. Even more imO(N In N+N) operations, wherdl is the number of pixels on
portantly, it is difficult to generalize the approach to systemshe grid[13].

This computational demand severely limits the applicabil-
ity of the method. When high digital resolution is important,
*On leave from the Institute of Physics, Tartu University, Tartu, for instance, in systems that contain several different struc-

Estonia. URL: http://giotto.ims.uconn.edu/~rozman/ tural length scales, it can only be applied with difficulty. In
'Electronic address: order to improve performance, it has been proposed to evalu-
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function only along selected spatial directiofisl]. While Gij(r):<Pi(o)Pj(r)> )
significantly reducing the computational load, this has been
shown to lead to the undesirable generation of structures
with lower symmetry than the target correlation function 1
[13,14. =—f dr'pi(r)p;(r+r'). 3)

In the present contribution, we propose a discrete minimi- Vv
zation algorithm for restoration that avoids these shortcom-
ings. The new algorithm uses a method to update the corre-
lation function much faster than the FFT, requiring only The problem under study here is to find a set of density
O(N) operations. This is possible by reusing the correlatiorfunctions{p;(r)} that are consistent with a given set of cor-
function from the previous configuration, rather than recom-elation functions{Gi‘j(r)} to within a specified precision. As
puting it from scratch at every step. In addition, candidateis well known, this inverse problem is ill posed in general
pixels for the Monte Carlo moves are chosen exclusively af11]. Therefore any practical algorithm selects a microstruc-
phase boundaries, and a minimization method different fronyre from the manifold of possible solutions, minimizing the
the traditional simulated annealing protocol is used. It will bediscrepanC)A between the configuratiofp;(r)} and a given

shown that these improvements together lead to speedups ét of target correlation functiof&!,(r)}, whereA is de-
. .y 1] H
more than three orders of magnitude. In addition, the metho ned as

is easily implemented on parallel computer architectures.

The rest of the paper is organized as follows. Section |l
introduces the reconstruction algorithm in detail. In Sec. Ill,
the method is applied to several two- and three-phase sys- A=, dr|Gij(r)—G}-(r)|. (4)
tems. The implementation of the new algorithm on parallel i Jv .
computer architectures is discussed in Sec. IV. Finally, con-
clusions are drawn in Sec. V. In the Appendix the update
procedure is described in a form suitable for programming, Starting from a given configuration, a new one can be
and some implementation details important for algorithmobtained by applying a series of local changes to the densi-
performance are discussed. ties p; . The next section discusses the response of the cor-

relation functions to such local perturbations.
Il. COMPUTATIONAL METHODS

A. Mathematical formulation of the reconstruction problem B. Update of correlation functions after local perturbations

In order to numerically describe a random medium it is
necessary to introduce a finite cell subject to periodic con
tinuation conditions such that an infinite medium is com-
posed of periodic “images” of the fundamental cell. We
denote the cell symbolically by and spatial integration over
the cell is represented by, dr . .. . The cell volume is then

As outlined in the Introduction, previously proposed algo-
rithms to reconstruct discrete two-phase systghis-15 are
based on Monte Carlo type minimization of the discrepancy
A. Randomly chosen local changes in the discretized density
are accepted or rejected using a simulated annealing proto-
col. The change in the discrepanaymust be computed for

each attempted Monte Carlo step in order to decide whether
V= Ldr. it should be accepted or rejected. To this end, the correlation
function has been recalculated completely from scratch after
The microstructure of a material consistingrotomponents ~ €Very attempted steji3].
is completely described by the local densitipg(r), i Closgr analys_|s, however, reveals_that th<=T response of the
=1...n. By definition, thep; are positive quantities. The COrrelation function to docal change in density can be ob-
average concentration of componéran be written as tained in a computationally much less costly way if the cor-
relation functionbeforethe change is known.
1 In order to illustrate the idea, it is sufficient to discuss the
¢i=(pi)= vj drpi(r). () response of the autocorrelation functi@dr) to a local per-
v turbation in the density; the case of cross-correlation func-
tions is completely analogous. The simplest local change in
the density can be represented as

p"(r)=p°(r)+ad(r—ry), (5)

The angular brackets in E¢Ll) denote the ensemble average,
which can be replaced by the volume average,

1
(... —vadr...
where p® and p" are the density functions before and after
if the system is stationary and macroscopically homogethe perturbationa is the magnitude of the change ana)
neous. denotes Dirac’s delta functiof23]. Using the definition of
The two-point correlation function§;;(r) are defined as the correlation function, we obtain
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sible in practice to depart from a configuration that repre-
sents them correctly. It is therefore advantageous to use el-
ementary Monte Carlo steps that conserve the concentrations
such as exchanging the contents of two pixels.

In the rest of the paper, we will restrict the discussion to
the case ofcomplete segregationf the components into
separate phases. In this case, it is possible to completely
characterize the microstructure in terms of characteristic den-
sity functions, which are defined in the following way:

11

pi(r)= 0

when r is within phasei

(12)

otherwise.

This means that at every locatian exactly one of the

densities{p;(r)} is equal to 1, whereas all the others vanish.
In this case, the density functions obey the relation
FIG. 1. Speedup of the update algorithm with respect to FFT vs 5

pi(r)=pi(r),

linear size of the grid. The ling=5 Inx—9.5 is provided as a guide
to the eye. ) i

and the average concentratiofisadopt the meaning of vol-
ume fractions.

grid size

(12

Gn(r)zif dr’p"(r")p"(r+r") (6) We will represent the microstructure inside the periodic
Vv cell on an orthogonal grid, each pixel of which will contain
exactly one of tha different components. Accordingly dis-
1 't oor) , o , cretized formulas for the update of the auto-correlation and
_VJvdr [p°(r)+ad(r’ —ry J[p°(r+r’) cross-correlation functions, which are directly suitable for
implementation on a computer, are presented in the Appen-
+ads(r+r' —ry)] (7) dix.

:VJ dr'[p°(r")pO(r+1') +ap°(r' ) S(r+1’ —ry) C. Restriction to interfacial Monte Carlo moves
%

For an accurate description of a microstructure on a dis-
crete grid, the size of the pixels must be chosen considerably

+ap®(r+r")s(r'—ry)+a?s(r' —ry)s(r+r’ —r : .
a ) v ( i V1 cmaller than the smallest feature size present in the structure.

(8) If this condition is fulfilled each phase in the system, what-
) ever its geometrical shape, is composed of a large number of
=Go(r)+alp°(r—ry+p°(r+ryl+aa(r). (9 contiguous pixels. In other words, the overwhelming major-

ity of pixels will be completely surrounded by others that
Hence, the updated correlation functiGf(r) can essen- contain the same component.

tially be found from the “old” oneG°(r) by a simple addi- Selecting candidate pixels for Monte Carlo moves com-
tion of the shifted density function. If this is done on a dis- pletely at random runs counter to this observation. In the vast
crete grid ofN cells, it requires onlyO(N) operations as majority of cases, such moves will generate single, isolated
opposed toO(NInN+N) if the fast Fourier transform is pixels of one phase embedded in another. Eventually, of
used. In practice, this translates to a speedup by one to tWepurse, the minimization procedure will remove these arti-
orders of magnitude. Figure 1 shows the speedup factor beacts and converge to a compact structure in agreement with
tween Eq(9) and the fast Fourier transfor[@4] for a single  the given correlation functions. However, much of the com-
Monte Carlo steggexchange of the contents of two pixels on puter time necessary for minimization is used solely to re-
a two-dimensional gridas a function of grid size. The up- move such spurious isolated pixels.

date scheme is not restricted to two-point correlation func- This can be remedied by selecting exclusivietierfacial
tions. It can be generalized to hlgher order correlation funCpixe|S (WhICh have at least one neighbor that contains a dif-
tions in a straightforward manner. ferent componentas candidates for an exchange Monte

The last term in Eq(9), which does not depend an,  Carlo step. As illustrated in Fig. 3, this substantially in-
reflects the change in the average concentration caused Byeases the rate of convergence. The resulting speedup is
the perturbation, most significant in the later stage of reconstruction.

It is important to note that the restriction to interfacial
moves does not lead to conservation of the number of inter-
facial pixels in the system, since a pixel is allowed to have a
different number of unlike neighbors before and after a
The average concentrations can easily be computed fromraove. Therefore, the method remaieigodic i.e., all con-
given set of correlation functions. Hence, it is always pos-igurations possible at the given volume fractions are acces-

n 1 n 0, 2
¢ =vadrp (I’)=¢ +v. (10)
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sible from any starting configuration. a) b)

The selection of interfacial pixels requires some compu- i
tational effort. In principle, it is possible to keep track of all i i
interfacial pixels in a suitable dynamic data structure. Once ‘ .
established, this list can be continuously kept up to date a :
marginal cost. However, in all cases studied, the computel
time needed per Monte Carlo move is strongly dominated by
the update of the correlation functions. Even if the selection ;
is done by repeated random choice until an interfacial pixel W%
is found, the overhead remains negligible. D) - 4

D. Optimization technique

In addition to the improvements described in the previous
sections, we have found that a simpler variant of stochastic
minimization than the traditional simulated annealing ap-
proach leads to faster convergence in all cases studied. In
stead of the conventional Metropolis criterion, our algorithm
simply accepts a move if it decreases the discrepaneyd
rejects it otherwise. This is related to the “Great Deluge”
algorithm which has been successfully applied to this prob-
lem by Cule and Torquatfil3]. In the initial stage of mini-
mization, where the discrepancy is large, this leads to a rapic
rate of convergence. Eventually, however, when conver-
gence is almost achieved, the acceptance ratio becomes in
practicably low. At this stage, we found it advantageous to
allow for an “uphill” move once in a while. The algorithm §
presented in this contribution achieves this by accepting a
single Monte Carlo move after a specifiddrge) number of FIG. 2. Simple two-phase test systefa) Target structure(b)
continuous rejections, regardless of the change in the dispjtial random configuration(c) configuration after 2706 attempted
crepancy It causes. Monte Carlo moveg1000 accepted stepsd) configuration after

Whereas the conventional simulated annealing protocot132 attempted Monte Carlo mové000 accepted stepse) con-
relies on several parametefrsumber of temperature levels, figuration after 15000 attempted Monte Carlo mov@860 ac-
number of equilibration steps at each level, starting temperacepted steps (f) final configuration (150000 attempted Monte
ture), all of which must be carefully tuned to the problem Carlo moves, 2535 accepted steps
under study, the method outlined above has only a single one
(the number of rejections until an “uphill” move is al-
lowed), which is very simple to choose in practice.

e)

Figure 3 illustrates the convergence behavior of the algo-
rithm. The decrease of the discrepancy, shown in Fig), &
significantly more rapid if only interfacial Monte Carlo
moves are usetbolid line) rather than when no such restric-

While the algorithm is completely independent of the tion is applied(dashed ling The concentration of interfacial
number of spatial dimensions, the examples presented in thgxels is plotted in Fig. @). Starting at a high value of 0.88
following are two-dimensional for convenience of visualiza-for the random initial structure, interfacial Monte Carlo
tion. moves bring it quickly close to the correct value &

~0.234. As is obvious from the figure, this takes very much
longer if candidate pixels are chosen completely at random.
A. A simple test case The restriction to interfacial moves leads to two clearly

As a simple test, a target autocorrelation function waglistinct kinetic regimes. First, a rough approximation to the
obtained from the periodic two-phase structure shown in Figstructure is found as shown in Fig(d2. This stage is char-
2(a). Departing from the initial (random) configuration acterized by a rapid decay of the discrepancy and a high
shown in Fig. 2b), the target structure becomes alreadyacceptance ratio of the Monte Carlo moves.
roughly recognizable after about 7000 attempted Monte At some point, the acceptance ratio drops significantly
Carlo moveq2000 accepted stepFFig. 2(d)]. After 15000 and the convergence slows down. This stage is reached when
attempted moves, the structure is essentially correct, with théhe concentration of interfacial pixels has roughly converged
exception of a small number of pixels on the phase boundto the correct value and the target correlation function is
aries[Fig. 2e)]. Using a number of different initial configu- already quite well reproduced. After this point, the structure
rations, random as well as layered, it was verified that theemains essentially unaltered in general appearance but is
restoration process does not depend on the initial state.  gradually refined in detail.

Ill. RESULTS AND DISCUSSION
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300

sin(2rr/ag)
27rlag

G(r)=¢*+ ¢(1—¢)e "0 . (13

200
which applies to a two-component system wherds the

volume fraction of phase 1. The parameteysanda, control

the overall exponential damping and the short-range oscilla-
tory behavior of the correlation function, respectively. In the
limit ag<<ry, ag determines the short-range structural length
scale of the medium. Equatiof13) has been used exten-

0 , , , sively as a benchmark for reconstructipf13]. A typical

1 . . , structure calculated using the parametegs=0.55, r
=1.1, ay=0.1283_, wherelL is the linear size of the cell, is
presented in Fig. @).

After about 900 000 accepted Monte Carlo steps the struc-
ture has essentially converged. The correlation function is
reproduced to a good precision. The remaining discrepancies
are due to the fact that the correlation function in Ep) is
not physically realizable in the case of complete segregation
[25]. Several necessary conditions for realizability, in addi-
tion to the ones discussed by Torquf26], will be reported
, , , in a forthcoming publication. For reasonable choices of the
0 4000 8000 12000 parameters, however, stochastic minimization will still find a

number of attempted MC steps structure that approximates E@.3) to a satisfactory preci-
sion. Although a much smaller resolution would have been

FIG. 3. Convergence of the algorithm for the test structure ingfficient in this case, 10241024 pixels have been used for
Fig. 2. The solid lines correspond to selective Monte Carlo move%onsistency with the following example

using interfacial pixels only, whereas dashed curves were obtained In order to illustrate the additional capabilities offered by

using completely random moves. Top panel: convergence of thﬁwe algorithm, Fig. &) shows a similar structure calculated
discrepancy, bottom panel: convergence of the interfacial pixel con; ! '

. . A for the correlation function
centration. The horizontal line indicates the target valie

100

discrepancy (arb. units)

concentration of interfacial pixels

~0.234.
, 1 e SINC27r /@)
B. Construction of two-phase systems G(r)=¢+ Ed’(l_ p)e "o T/ao
Rather than from a given target configuration, it is also in(27r/
possible to depart from an analytically specified autocorrela- sin(2mr/a,) (14)
tion function such a$6,13 2mrla,
b) c) FIG. 4. Construction of

two-phase structures from the
analytically given correlation
functions shown by solid lines
in (@ [Eq. (13)] and (d) [Eqg.

(14)]. L is the linear size of the
D periodic cell. The target corre-
lation function(a) contains one
structural length scale, whereas
(d) includes additional short-
range oscillations(b) and (e)
a) — e) f show the resulting structures

055 - 4 on a 10241024 grid after

9000000 attempted Monte
Carlo moves. The correlation
functions corresponding to the

structures (b) and (e) are
D shown as dotted lines i@ and
(d), respectively. Magnifica-
tions of the indicated regions
are shown in(c) and(f).
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a) b) a) b)

FIG. 6. Reconstruction of a triphase knitted structure analogous
o ' . ; ) to a triblock copolymer systerf29]. (a) Target system(b) initial
Target system(b) initial configuration,(c) configuration after _3427 configuration,(c) configuration after 1684 attempted Monte Carlo
attempted Monte Carlo move2000 accepted steps(d) configu- moves(1000 accepted stepsd) configuration after 8446 attempted

ration after 9501 attempted Monte Carlo mov@®00 accepted  \1onte Carlo moveg3000 accepted stepse) configuration after
steps, (e) configuration after 25 176 attempted Monte Carlo moves;g 713 attempted Monte Carlo mové$000 accepted stepsif)

(6000 accepted stepsi(f) final configuration(200 000 attempted final configuration(200 000 attempted Monte Carlo moves, 4519
Monte Carlo moves, 7771 accepted syeps accepted steps

FIG. 5. Reconstruction of a triphase core-shell structiag.

with a,= 0.0125_._AII other parameters have the same val- Figure 5 shows an example of the reconstruction of a
ues as in the previous example. This systemtiasdifferent  y hothetical periodic particulate system of disks of phase
structural length scales given lay anda;. Suqh structures  ancjosing a “nucleus” of phas®, interspersed in a matrix
must be represented by a highly resqlved grid (202024  ~ \/olume fractions arepp=0.4, ¢5=0.3, andpo=0.3.
in this cas¢ Whereas t_h(_e_computathnal demands wouldype target configuratiorfFig. 5@a] was obtained using
have been close to prohibitive for previously proposed algoyonte Carlo mixing of hard disks and subsequent digitiza-
rithms, the calculation converged after about 24 h of CPU;jon on a 64< 64 grid. Figures &), 5(d), 5(e), and 5f) show
time on 8 nodes of a parallel workstation cluster using thepe reconstructed system after 3427 9501 25176, and
method presented here. 200000 attempted Monte Carlo moves, respectively.

A second example is presented in Fig. 6. It corresponds to
a two-dimensional section through a periodic 3D layerlike
structure, which has been observed experimentally in a tri-

Many important materials consist of more than two pjock copolymef29]. The periodic cell of the microstructure
phases. Therefore, the new algorithm has been implementggh g digitized on a 64 64 grid.

quires the consideration of autocorrelation as well as cross<gg sec for both examples. The computations were per-

correlation functions, is illustrated below using exampleformed on an AMD K7 700 MHz based computer.
structures that have been selected in analogy to some of the
microstructures observed in triblock copolymers. This class
of materials is well known to phase separate into a rich va-
riety of microstructures depending on the relative length of The proposed algorithm is ideally suited for parallel
the different blockg27,28|. distributed-memory machines. In our implementation each

C. Triphase systems

IV. PARALLELIZATION
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due to the presence of several structural length scales as well
17 / 1 as multiphase systems, where more than one correlation
5 15| " . ] function is relevant.
2 /” . An interactive demonstration of the method as well as
g 13y et 1  animated versions of Figs. 2, 5, and 6 are available on the
@ 11} e ] authors’ web sitd31].
4 o
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APPENDIX: IMPLEMENTATION OF THE UPDATE
FIG. 7. Scaling of the algorithm on a cluster of Pentium Il 500 PROCEDURE
MHz machines with 100 Mbit/sec Ethernet communications. ) . .
In the following, detailed formulas are given for the up-
date of correlation functions after exchange of the contents

computational node is responsible for a slice of the correla- w0 pixels. These formulas are essentially discretized ver-
tion functions. One node acts as a master, selecting a pair 8{ P : : Sentially

: oo Sions of the fundamental relationship given in Eg), and
pixels for Monte Carlo exchange and broadcasting it to thecan directly be used in order to implement the algorithm on
slaves. These then update their slices of the correlation func- y P 9

tions according to Eq$A5)—(A8) and report the respective ahco dr?pL:t?r. Ilpiéhef forI:ov:/Lr;g, ra’narr]gg’ ?e?c()jti?nvictio? OE i
contributions to the discrepancy back to the master. To thi§ € discrete grid of an arbitrary number o ensions. 1t 1s

- : dvantageous to work with un-normalized discrete represen-
effect, it is necessary for each slave to store the entire currer?t 9 P

configuration as well as the relevant slices of the target cortdtions of the correlation functions defined as

relation functions. The master then decides whether or not to

accept the move and broadcasts its decision to the slaves, Gij(r)=2 pi(r")pj(r+r’). (A1)
which in turn update the locally stored current configuration. r’

The communication load gengrated by this scheme is min.iConsider two pixels located at the grid poimtsndb. As-
mal; at each c_y_cle only a few integer numbers for the Candl'sume them to contain componenindj, respectively. If the
d_at_e pixel positions, the discrepancy, and the acceptance d&')ntents of those two pixels are exchanged, the density func-
cision need to be exchanged between master and slaves. Thi

- Sns p; and p; transform in the following way:
represents another advantage over Fourier transform meth- Pi Pi g way

ods, since parallelization of the FFT algorithm generates a pi(N)—pi(r)—8(r—a)+ 8(r—b), (A2)
much larger communication logd@0, Chap. 3
Figure 7 shows the speedup of the algorithm as a function pj(r)—pj(r)+8(r—a)—(r—b). (A3)

of the number of processors for a two-phase system on a

3072x 3072 grid. The scaling is linear over the entire rangeHere, 5(r) has the meaning of the Kronecker tensor; it is

and no saturation effects are observable. unity if all components of its argument vanish and zero oth-
erwise. All other density functions are, of course, unaffected
by the move, hence

A highly efficient Monte Carlo minimization algorithm PN = pdr), - kAL *4)
for the reconstruction of multiphase microstructures from Four different cases must be discussed for the update of
correlation functions has been introduced. The method conthe discretized correlation functions. Trivially, correlation
putes the response of the correlation functiondotmlized  functions that involve neither of the two componentnd]
changes in the underlying densities. This decreases the CRldmain unaffected,
time per Monte Carlo step by one to two orders of magnitude
compared to previous methofis3]. In addition, candidates Gim(r)—Gim(r),  1,m#i,j. (AS5)
for Monte Carlo moves are selected exclusively at phas
boundaries, leading to a greatly enhanced rate of conve
gence. The two improvements are independent from each
other. Their effect on the overall CPU time needed for res- Gin(N—=Gin(N—pm(r+a)+pn(r+b), m#j,
toration is multiplicative. (AB)
The speedup is such that problems that were previously
out of reach due to the computational demand can now bwhereas the cross-correlation function betweamdj must
treated. This includes systems that require high resolutiobe updated as

V. CONCLUSIONS

:E_:orrelation functions involving exactly one of the two com-
onentsi andj transform as

066701-7



M. G. ROZMAN AND MARCEL UTZ

Gij(r)—G;j(r)+pi(a—r)—pij(b—r)—pj(at+r)+p;(b+r)
+do(b—a—r)+8(a—b—r)—24(r). (A7)

Finally the autocorrelation function§; and G;; transform
as follows:

Gii(r)—=Gii(r)—pi(a=r)+pi(b—r)=pi(at+r)+pj(b+r)
—8(a—b+r)—38(b—a+r)+24(r), (A8)
ij(r)—>ij(r)+pJ—(a—r)—pj(b—r)+p]-(a+r)—p]-(b+ r)
—8(a—b+r)—38(b—a+r)+25(r). (A9)

PHYSICAL REVIEW E 63 066701

Note that Eqs(A5)—(A8) conserve the normalization of the
correlation functions, i.eGj;(0)— Gj;(0) for alli,j.

As is evident from these update formulas, the entire
Monte Carlo algorithm, including the calculation of the dis-
crepancy, involves only addition and multiplication opera-
tions and never division. This is important, since it makes it
possible to implement the algorithm entirely in terms of in-
teger numbers. Depending on the computer architecture
used, this may bring about another speed advantage. Even
more importantly, it completely removes any accumulation
of roundoff errors. Given a fully representable set of dis-
cretized correlation functions, the algorithm is thus capable
of providing anexactsolution.
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